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Abstract

In this paper we use a hybrid Monte Carlo-Optimal quantization method to
approximate the conditional survival probabilities of a firm, given a structural
model for its credit default, under partial information.

We consider the case when the firm’s value is a non-observable stochastic
process (V;),~, and investors in the market have access to a process (S¢);~,
whose value at each time ¢ is related to (V5,0 < s < t). We are interested in
the computation of the conditional survival probabilities of the firm given the
“investor’s information”.

As an application, we analyze the shape of the credit spread curve for zero
coupon bonds in two examples. Calibration to available market data is analyzed.

Keywords: credit risk, structural approach, survival probability, partial informa-
tion, filtering, optimal quantization, Monte Carlo method.



Introduction

In this paper we compute the conditional survival probabilities of a firm, in a market
that is not transparent to bond investors, by using both Monte Carlo and optimal
quantization methods. This allows us to analyze the credit spread curve under partial
information in some examples, in order to investigate the degree of transparency and
riskiness of a firm, as viewed by bond-market participants.

To introduce the problem, recall that most of the bonds traded in the market are
corporate bonds and treasury bonds, that are consequently subject to many kinds
of risks, such as market risk (due for example to changes in the interest rate), coun-
terparty risk and liquidity risk. One of the main challenges in credit risk modeling
is, then, to quantify the risk associated to these financial instruments.

The methodology for modeling a credit event can be split into two main ap-
proaches: the structural approach, introduced by Merton in 1974 and the reduced
form approach (or “intensity based”), originally developed by Jarrow and Turnbull
in 1992.

The structural approach consists in modeling the credit event as the first hitting
time of a barrier by the firm value process.

In reduced form models the default intensity is directly modeled and it is given
by a function of latent state variables or predictors of default.

The first approach, in which we are interested, is intuitive by the economic point
of view, but it presents some drawbacks: the firm value process can not be easily
observed in practice, since it is not a tradeable security, and a continuous firm’s
value process implies a predictable credit event, leading to unnatural and undesirable
features, such as null spreads for surviving firms for short maturities.

Despite the apparent difference between the two models (see, e.g., Jarrow and
Protter, 2004), some recent results, starting from the seminal paper Duffie and Lando
(2001), have unified the two approaches by means of information reduction. We
can also cite Cetin, Jarrow, Protter and Yildirim (2004), where they consider an
alternative method with respect to Duffie and Lando (2001), namely, a reduction
of the manager’s information set, to pass from structural to reduced form models;
Giesecke (2006), where the role of the investor’s information in a first passage model
is investigated and Giesecke and Goldberg (2004), where a structural model with
unobservable barrier is studied.

We consider a structural model under partial information, in which investors can
not observe the firm value process, but they have access to another process whose
value is related to the firm value process. We show in two examples that yield spreads
for surviving firms are strictly positive at zero maturity, since investors are uncertain
about the nearness of the current firm value to the trigger level at which the firm
would declare default. The shape of the term structure of credit spreads may be
useful, then, in practice to estimate the degree of transparency and of riskiness of a
firm, from the investors’ point of view.

We show that the computation of the conditional survival probabilities under
partial information leads to a nonlinear filtering problem involving the conditional
survival probabilities under full information. These former quantities are appro-
ximated (when no closed formula is available) by a Monte Carlo procedure. As
concerns the (non)linear filtering problem, in continuous and discrete time, several



computational techniques are known. An overview of some existing methods can be
found in Bain and Crigan (2009). These techniques include e.g. particle filtering,
the extended Kalman filter, etc. Optimal quantization is an alternative method
in discrete time. One of the advantages of this method with respect to the others
existing is that, once an optimal quantization of the signal process has been obtained,
it can be kept off-line and used instantaneously to estimate the filter. This is the
main reason why we use optimal quantization to estimate the discrete time filter
distribution. For a comparison between particle filtering and optimal quantization
see e.g. Sellami (2008).

The paper is organized as follows. In the first section, we present the market
model and we decompose our problem into two problems (P1) and (P2), that are,
respectively, the computation of conditional survival probability in a full information
setting and the approximation of the filter distribution. Section 2 and Section 3 are
devoted to the solution of the previous two problems. We provide error estimates
in Section 4 and, finally, in Section 5 we present two numerical examples concerning
the application to credit risk and we calibrate the given model by minimizing the
quadratic error between the predicted credit spreads and market credit spreads.

1 Market model and problem definition

Let us consider a probability space (£2, F,P), representing all the randomness of our
economic context. In this paper we concentrate our attention on a single firm model,
in which the company is subject to default risk and we use a structural approach to
characterize the default time.

The process representing the value of the firm, given for example by its value of
financial statement, is denoted by (V;),~, and we suppose that it can be modeled as
the solution to the following stochastic differential equation

{ AV, = b(t,Vi)dt + o(t,Vy)dWy, (1.1)

‘/0 = Yo,

where the functions b : [0,400) x R — R and o : [0, +00) X R — R are Lipschitz in
uniformly in ¢ and W is a standard one-dimensional Brownian motion. We suppose
that o(t,x) > 0 for every (t,z) € [0,400) x R.

In our setting the process V' is non observable (it is also known as state or signal),
but investors have access to the values of another stochastic process .S, providing
noisy information about the value of the firm, that can be thought, for example, as
the price of an asset issued by the firm.

This observation process follows a diffusion of the type

{ S, = S; [(Vi)dt + v(t)dW; + 6(t)dW;] , (1.2)

So = so,

where 9 is locally bounded and Lipschitz, v and § are bounded deterministic con-
tinuous functions and W is a one-dimensional Brownian motion independent of .
Note that in this model the return on S is a (nonlinear) function of V' affected by
a noise. A key observation here concerns the volatility of S, that cannot be a func-
tion of V. Otherwise we would be able, under suitable regularity properties of this



function to obtain estimations of the firm value from the market observations of the
quadratic variation of S.

We will deal with two different filtrations, representing different levels of in-
formation available to agents in the market and we suppose that they satisfy the
usual hypotheses: a filtered probability space (Q,F, (Ft);~q, P) satisfies the usual
hypotheses if Fy contains all P-null sets and if the filtration is right-continuous.

The first and basic information set is the “default-free” filtration, the one gene-
rated by the observation process S, which we will denote, for each t > 0,

]:f =0(85,0<s5<t)

and the second omne is the full information filtration (G;),~, i.e., the information
available for example to a small number of stock holders of the company, who have
access to S and V at each time t. In our case, the full information filtration is the
one generated by the stochastic pair process (W, W). In conclusion we have

FSCG, Vt>0,

and we observe that the following immersion property holds (see Coculescu, Geman
and Jeanblanc, 2008, Proposition 3.1, for an analogous analysis):

Lemma 1.1. Any (F}),-local martingale is a (Gt),-local martingale. We will say
that filtration (F7), is immersed in the full filtration (Gt),.

Suppose now that a finite time horizon T is fixed. For a given s, 0 < s < T, we
observe the process S from 0 to s. At time s if the firm has already defaulted we do
nothing. Otherwise, we invest in derivatives issued by the firm. Then, in practice,
following a structural approach, we define the default time as

T:=inf{u>s:V, <a}, (1.3)

where as usual inf ) = 400 and a € R,0 < a < vy (notice that in numerical examples
we will consider models where V; € (0,400), eventually by stopping the process V'
at the default time 7 by considering the process (Vir7),). We are then interested in
computing the following quantity, for a given t, s <t < T,

P( inf (S 1.4
<S%111L§Vu>a]-"s>, (1.4)
that is the conditional survival probability of the firm up to time ¢, given the collected
information on S up to time s. We will see in Section 5 how this quantity plays a
fundamental role (if computed under a pricing measure) in the computation of credit
spreads for zero coupon bonds.

Remark 1.2. In our setting, introducing the filtration gt(s) =F’VoltnT),t>0,
we have g§s) = F5 so that
g@) :

s

P<mf%>4ﬁv:P<mf%>a

s<u<t <u<t



1.1 Reduction to a nonlinear filtering problem

Using the law of iterated conditional expectations, the Markov property of V' and
the independence between W and W, we find, for each (s,t) € RT x R* s < t,

gs) ]fs]

= E[F(s,t,V5)|FY],  P-as. (1.5)

IP’( inf Vu>a‘}"§) - E[P( inf V,>a

s<u<t s<u<t

IE[]P’( inf V,>a

s<u<t

where, for every x € R,

s<u<t

F(s,t,x) ::P<inf Vu>aVs:x>. (1.6)

Finally,

(P1) if we compute F(s,t,z) for every x € R, which is now a conditional survival
probability given the full information filtration, and

(P2) if we obtain the filter distribution at time s, i.e., the conditional distribution
of V; given F2, Uy, zs,

then we are done, since it suffices to compute the integral
(o.9]
E [F(s,t,Vy)|FS] = / F(s,t,2)Iy, 75 (dx)
oo
_ / Fs £, )Ty, s ().
a

It remains to solve the two “intermediate problems” (P1) and (P2). Let us consider
first problem (P2).

2 Approximation of the filter by optimal quantization

We recall in what follows some facts about optimal vector quantization.

2.1 A brief overview on optimal quantization

Consider an R%valued random variable X defined on a probability space (£, A, P)
with finite r-th moment and probability distribution Pyx. Quantizing X on a given
grid T' = {2!,--- 2"} consists in projecting X on the grid I" following the closest
neighbor rule. The induced mean L"-error (r > 0)

1% = Projp(X)|l; = || min [X — 2’|,

1<i<N

where || X]],. == [E(\X]T)]l/r, is called the L"-mean quantization error and the pro-
jection of X on I', Projp(X), is called the quantization of X. As a function of the
grid I" the L"-mean quantization error is continuous and reaches a minimum over all



the grids with size at most N. A grid I'* minimizing the L"-mean quantization error
over all the grids with size at most NV is called an L"-optimal quantizer.

Moreover, the L™-mean quantization error goes to 0 as the grid size N — +oo
and the convergence rate is ruled by Zador theorem:

Lmin X = Projr(X) | = Qr(PON TV + o(N 1)

where Q,(Px) is a nonnegative constant. We shall say no more about the basic
results on optimal vector quantization. For a complete background on this field we
refer to Graf and Luschgy (2000).

The first application of optimal quantization methods to numerical probability
appears in Pages (1997). It consists in estimating E f(X) (it may also be a conditional
expectation) by

Ef(Projp«(X)) = Z (@™ p; (2.1)

where T'* = {z*!,.-- | 2*N} is an L"-optimal grid for X and p; = P(Projp.(X) =
x*’) The induced quantization error estimate depends on the regularity of the func-
tion f.

lf (z)—f ()]

o If f : R? » R is Lipschitz continuous and r > 2, introducing [ f]Lip := SUPy

then

[Ef(X) — Ef (Projp«(X))] E|f(X) — f(Projp(X))]
[fLip [ X = Projr« (X)]l1

[fILip[| X = Projp« (X) 2.

VAN VAR VAN

e If the derivative Df of f is Lipschitz and r > 2, then, for any optimal grid I'*, we
have
[Ef(X) = Ef (Projp. (X)) < [Dfluipll X = Projr. (X)]3.

How to numerically compute the quadratic optimal quantizers or L"-optimal (or
stationary) quantizers in general, the associated weights and L"-mean quantization
errors is an important issue from the numerical point of view. Several algorithms
are used in practice. In the one dimensional framework, the L"-optimal quantizers
are unique up to the grid size as soon as the density of X is strictly log-concave. In
this case the Newton algorithm is a commonly used algorithm to carry out the L"-
optimal quantizers when closed or semi-closed formulas are available for the gradient
(and the hessian matrix).

When the dimension d is greater than 2 the L"-optimal grids are not uniquely
determined and all L"-optimal quantizers search algorithms are based on zero search
recursive procedures like Lloyd’s I algorithms (or generalized Lloyd’s I algorithms
which are the natural extension of the quadratic case), the Competitive Learning
Vector Quantization (CLVQ) algorithm (see Gersho and Gray, 1992), stochastic
algorithms (see Pages, 2008, and Pages and Printems, 2003), etc. From now on we
consider quadratic optimal quantizers.



2.2 General results on discrete time nonlinear filtering

For an overview on nonlinear filtering problems in interest rate and credit risk mo-
dels we refer to Frey and Runggaldier (2009) and references therein and, focusing on
filtering theory in credit risk, we also have to mention the seminal papers Kusuoka
(1999) and Nakagawa (2001).

We consider a general discrete time setting, in which we recall the relevant for-
mulas and the desired approximation of the filter (see, e.g., Pages and Pham, 2005
and Pham, Runggaldier and Sellami, 2005, for a detailed background). We introduce
a probability space (£2,.4,P) (notice that PP is not the same measure we considered
in Section 1, but for simplicity we will use the same notation) and we suppose that:

e the signal process (X}),cy is a finite-state Markov chain with state space FE,
with known probability transition, from time k—1 to time k, Py(xg_1,dzg), k >
1, and given initial law u, and

e the observation process is an R9%-valued process (Y%) ren such that Yo = yo and
the pair (X, Yz),cy is a Markov chain.

Furthermore, we suppose that for all £ > 1

(H) the law of Y) conditional on (Xj;_1, Yx—1, Xj) admits a density
Uk = ge(Xe—1, Ye1, Xis Yk),

so that the probability transition of the Markov chain (Xj, Yy),cy is given by
Pi(xg—1,dzr) gk (Tgp—1, Yk—1, Tk, Y )dyk, with initial law p(dzg)de(dyo).

In this discrete time setting we are interested in computing conditional expecta-
tions of the form

Oy, f =E[f(Xn)|Y1,...,Ys],

for suitable functions f defined on F, i.e., we are interested in computing at some
time n the law Ily,, of X, given the past observation Y = (Y7,...,Y}). Having fixed
the observation Y = (Y1,...,Y,) = (y1,...,yn) = y we will write II,,, instead of
Iy,

It is evident that, in the case when the state space of the signal consists of a
finite number of points, the filter is characterized by a finite-dimensional vector: if
for example each X, takes values in a set {zj,... ,x,]:f’“} (as in the case where we
quantize a process X at discrete times tx, k = 0,--- ,n with grids of size Nj), then
the discrete time filter distribution will be fully determined by the Ng-vector with
components

V=P (Xp=aiY1,....Y%), i=1,...,N.

It is for this reason that, following Pages and Pham (2005), we apply optimal quanti-

zation results in order to obtain a spatial discretization, on a grid 'y, = {a:,lc, cen a:]kv"},
of the state Xg,k = 0,...,n, and we characterize the filter distribution by means
of the finite number of points {zg,z1,. .. ,xivl,xé, . mé\b, ook 2N} making

up the grids (I'y),.



In what follows we recall the basic recursive filtering equation, that we will use
in our numerics to approximate the filter. By applying the Markov property of X
and (X,Y) and Bayes’ formula, we find:

Tynf

Hy,nf = = 1
y’n

(2.2)

where 7y ,, is the un-normalized filter, defined by

Tynf = /"'/f(wn)u(dﬂﬁo) 1T 90 (k-1 vr—1, 20 yi) Pi(i—1, d). (2.3)
P

Equivalently, we recall the following recursive formula, that can be directly obtained
as well by applying Bayes’ formula and the Markov property:

IT, (dxy) o /gk(Ik—l,yk—hu’ﬂk,yk)Pk(JUk—hdxk)ﬂy,k—l(dwk—l),

where now y in I, ;1 represents the realization of the vector (Y1,...,Y,_1) and we
do not have equality because we need to re-normalize.
Now for any k € {1, ,n} note that

k
Tyrf = E(f(Xk) H 9i(Xi-1,%i-1, X, yi)) :
i=1

Therefore, introducing the natural filtration of X, (.7:,5 )penys We have

k
myrf = E(E(f(Xk)Hgi<Xi—layi—17Xi7yi)’]:l%X1))

=1

k1
= E (E (F(Xk)gh(Xi—15 k-1, Xk, Y )| Fio 1) H gi(Xi—lvyi—hXiayz’))

i=1

k—1

= E (Hy,k(f(Xkl)) H gi(Xi—layi—leivyi)> 5 (2.4)
i=1

where Hy 1,k = 1,...,n,is a family of bounded transition kernels defined on bounded
measurable functions f: £ — R by:

Hypf(wp-1) = E[f(Xe)gk(@r-1,Yr—1, Xi» Y )| Xk—1 = Tp—1]
= /f(l‘k)gk(xk1,yk1,$k,yk)Pk($k1,d$k)7 (2.5)

with x,_1 € E. Furthermore, for every x € E, we have

Hyof (&) =y = Ef(Xo)] = [ flao)ulcian).
It follows, then, from (2.4) that
Tykf = myr—1Hyrf, k=1,...,n, (2.6)
so that we finally obtain the recursive expression

Tym = Hygo Hyy0---0Hyp.



2.3 Estimation of the filter and related error

The estimation of the filter by optimal quantization is already studied in Pages and
Pham (2005) and in Sellami (2005). It consists first in quantizing for every time step
k the random variable X by considering

)?k = PI‘Oij (Xk:)v k= 07 N, (27)

where I'y, is a grid of Ny points a:};, i =1,---, Ng to be optimally chosen and where
Projr, denotes the closest neighbor projection on the grid I'x.

Owing to Equation (2.6) our aim is to estimate the filter using an approximation of
the probability transition Pj(xy—1,dxy) of X}, given Xj;_;. These transition proba-
bilities are approximated by the probability transition matrix py, := (p;’) of X k given
Xk_ll

P =P(Xp =2l | X1 =ak_)), i=1,- \Np_y, j=1,--- , Np. (2.8)

Then, following Equation (2.5), being the observation y := (yo, - ,yx) fixed, the
transition kernel matrix H, j is estimated by the quantized transition kernel H, j

Ny
T 7t - —
Hy,k_ZH7k5;p§c717 2_17"'7Nk—17 k_]-a"'7nu
P

where
H;/{k = gk‘(l‘;{;—17yk—1’ I]iviUk)ﬁ?) i=1,--- 7Nk—17 ] =1, aNk
and where the xi’s, j =1,--- Nj are the (quadratic) optimal quantizers of Xj.

The initial kernel matrix H, o is estimated by

No
Hy,o= Z]P’(Xo = 0) 6y
=1

This leads to the following forward induction to approximate m ,:
Ty0 = Hy 0, Tyk = Ty k—1Hy ks k=1,---,n, (2.9)

or, equivalently,

~

Ty,0 = Hyo
7o = (S Ne-1 i i —1....
Tyk = (Zi:l Hy,kﬂy,kfl)j:17...7Nk7 k=1,---,n.
Finally, the filter approximation at time ¢, is
~ Tymnlf
II = 4N 2.10
wnf = 20 (210)

In order to have some upper bound of the quantization error estimate of II, ,, f
by IL, ., f let us make the following assumptions.

10



(A1) The transition operators Py(z,dy) of X} given Xy_1, k=1,--- ,n are Lips-
chitz.

Recall that a probability transition P on E is C-Lipschitz (with C > 0) if for
any Lipschitz function f on E with ratio [f]r:p, Pf is Lipschitz with ratio [P f]r:, <
C[f]Lip- Then, one may define the Lipschitz ratio [P]r;, by

P .
[P]Lip = sup { P f]Lip , f a nonzero Lipschitz function } < 4-00.
[f]Lip
If the transition operators Py(x,dy), k =1,--- ,n are Lipschitz, it follows that

[P]Lip = kllllax [Pk]Lip < 4o00.

s

(A2) (i) For every k = 1,---,n, the functions gy (recall hypothesis (H)) are
bounded on E x R? x E x R? and we set

Ky = max |lgifco.

) )

(ii) For every k = 1,---,n, there exist two positive functions [g}]z; and
[97] Lip defined on RY x R so that for every x,2/,7,7’ € F and y,y’ € RY,

’gk(xvyam/ay,)_gk(/x\vy,§,7y/)| < [gl}:]LlP(yay,) |:C_:/L‘\|+[gl%][ﬂp(y7y,) |:L‘/—5’J\,‘.

The following result gives the error bound of the estimation of the filter (see Pages
and Pham, 2005, Theorem 3.1, for details of the proof).

Theorem 2.1. Suppose that Assumptions (A1) and (A2) hold true. For eve-
ry bounded Lipschitz function f on E and for every n-tuple of observations y =
(Y1, ,Yn), we have for every p > 1,

yf Ty fl € ——0 S By(fp) X6 - Kl (2)
on(y) V ouly) 1=
with R
¢n(y) = 7Ty,n1a ¢n(y) = %y,nl
and
Bp(fp) = (2= 6o P ] + 2(”@‘; (9ol e vin) + (9210 (51, 91))

v ) Y (P (ol liro1m) + Plosllin(as1.) )
Jj=k+1

(Convention: go = gnt1 =0 and 0y, is the usual Kronecker symbol).

Remark 2.2. Concerning the above LP-error bounds, remark that in the quadratic
case (p = 2) the coefficients B are smaller than in the L' case, even if the L'
quantization error is smaller than the quadratic quantization error.

11



2.4 Application to the estimation of Ily, s

We focus now on solving problem (P2) and, in order to obtain the discrete time
approximation of the desired filter IIy, | zs, we fix a time discretization grid {p = 0 <
-+ < tp, = s in the interval [0, s] and we apply the results in the previous subsections
by working with the corresponding quantized process V' (we identify X with V' and
Y with S). From now on (V) ... ,, will denote either the continuous time process
V taken at discrete times tx, k = 0,--- ,n, or the discrete time Euler scheme relative
to V.

First of all, let us make the following remark concerning the conditional law of
St given ((Viw)ue[s > Ss)- This will ensure that in our case Hypothesis (H) is verified.

Remark 2.3. Let s < ¢. Using the form of the solution of the SDE (1.2)

Sy = S, exp (/t (v(va) - %(zﬁ(u) + 6%(w)) ) du + /: v(u)dW, + /: (5(u)qu) ,

we notice that
L(St|(Vu)s<ust, Ss) = LN(mg1503,), (2.12)

where
m,e = log(Ss) + / (w(vu)—;(u2(u)+52(u))—u(u)m)du+ / JV(lngu

and .
O‘it = / 6%(u)du.
S
LN(m;o?) stands for the lognormal distribution with mean m and variance o2.

Now, suppose that we temporarily have a time discretization grid from 0 to ¢:
ug =0 < u < -+ < uy =t For m large enough we can estimate the mean and
the variance appearing in Equation (2.12) by using an Euler Scheme. When the
estimations of the mean m; and variance agi between two discretization steps are
respectively denoted by m; and O']% and we have:

ﬁ(Sk‘kal,Skfl,Vk) = LN(mk;U,%) (2.13)
with
L.y 2
my = logSp_1+ (Y(Vi—1) — 3 (v (up—1) + 6 (up—1)) — v(ug—1)

v(ug—1)
o(ug—1, Vi—1)

b(uk—1, Vk—1) ) Ay
o(ug—1, Vi—1)

AV

and
J]% = (52(uk,1)Ak,

where Sy := Sy,; Vi :i= Vs AV = Vi — Viee1; A = up — ug—1. So, the law of Sy,
conditional on (Vi_1, Sk—1, Vi) admits the density (i.e., Hypothesis (H) is fulfilled)

1
Ik (Vi—1, Sk—1, Vi, ) = (logz — mk)2> , v €(0,400). (2.14)

1
oLTV 2T P ( 20,%

12



Remark 2.4. (a) In the case where

d‘/t = :U"/tdt + O-‘/tth) _ ‘/0 = Yo,
dS; = rSdt + vSedWy + S dWy, Sy = so,

we directly deduce from Remark 2.3 that for every s <t
E(St|(vu)s§u§ta Ss) =LN (ms,t§ Uit) .

with
1

Vi
= log S5 + [r—y——i(a +6%) + 5 }(t—s) glogvt and ag’t:52(t—s).

(b) (About the transition probabilities in Equation (2.8)) In a general setting the
transition probabilities

B =P(Vi =vlViei = vjoy)s i=1,--- \Niwy, j=1,-- N
where {v},p=0,---,n;¢=1,--- ,N,} are the quadratic optimal quantizers of the
process V', can be estimated by Monte Carlo. However, in some specific cases the
continuous time transition densities p(s,t, x,dy) := P(V; € dy|Vs = z),0 < s < t, are
explicitly obtained as solutions to the Kolmogorov equations. For example in the
case of item (a) of the remark,
02 2

e 20’2(1t—s) [IOg (%)_(”_7)&_5)} dy. (2.15)

s, t,x,dy) = ————
o v) oyr/2m(t — s)

This density can also be derived from the explicit form of V. In such situations, the
ﬁzj’s are estimated by

pkj ~ C(tk latlﬁvk 1?U]c+) - C(tkflatkavfefl:vi_)a

where C(tk_l,tk,vlkfl,-) is the cumulative distribution function associated with
P(tk—1,tk, vj,_q,dy) and where, for every k =0,...,n,
; A, AR 1
vt =k Kk 5 vl =k 2’“ s =2, N —1; v, =0; UN’“+—+OO.
In both situations, when estimating the ﬁzj’s by Monte Carlo or by optimal quanti-
zation, we commit an additional error.

Once problem (P2) solved, owing to Equation (1.5) we use optimal quantization
to estimate the P(infsgugt Vi > a|.7:§) on the set {T > s} by

ZF (s,t, 0} I, (2.16)

Where vi,i=1,---, N, is the quadratic optimal grid of the process V at time ¢, = s,
H; » is the i-th coordinate of the optimal filter ﬁy,n given in (2.10) and, for every
i, F(s,t,v.) is defined as in (1.6). Note that this last function has in general no
explicit expression. In such case, we will estimate it by Monte Carlo as specified in

the next section.
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3 Approximation by Monte Carlo of survival probabil-
ities under full information

The aim of this section is to solve problem (P1), i.e., to compute, for each pair of
positive values (s,t),s <t < T,

P< inf V, >a

s<u<t

V) =B (Unt,coc, visay Ve (3.1)

where in our general setting the firm value V follows a priori a diffusion of the type
(1.1). Notice that in the specific case where V' is a geometric Brownian motion there
exists a closed-formula, that we recall below.
If

dVy = puVidt + o VidWy, Vo = vy,

then

a

P <8inf< V> a|VS> = By (Ve t — 5)) <

<u<t Vs

o= (u=0?/2)
) B(ha(Virt — 5) (3.2)

where

h(z,u) = a\l/a <log (g) n (u - 502) u) ,

ho(z,u) = a\l/a <log (%) + <u - ;UZ> u>

1 T
and where ®(z) = oz / e~%/2dy is the cumulative distribution function of the
™ J—0co

standard Gaussian law. For an overview on the computation of boundary crossing
probabilities see e.g. Chesney, Jeanblanc and Yor, 2009, Borodin and Salminen, 2002
or Revuz and Yor, 1999.

Since in general we cannot use directly the result in Equation (3.2), we have
to resort to an approximation method. Several techniques can be used to estimate
these probabilities, such as in Kahalé (2007), where the crossing probabilities are
calculated via Schwartz distributions in the specific case of drifted Brownian motion
and in Linetsky (2004a) and Linetsky (2004b), where the survival probabilities and
hitting densities relative to the CIR, the CEV and to the OU diffusions are expressed
as infinite series of exponential densities:

o
Po(r > 1) =D cae ™, £>0, (3.3)
n=1
where 0 < A} < Ay < -+ < Ay, — 00 as n — oo and (¢,), are explicitly given

in terms of the solution of the Sturm-Liouville equation and the eigenvalues of the
Sturm-Liouville problem. When the basic solutions to the Sturm-Liouville equation
are known, this approach provides efficient estimates of the survival probabilities.
In this paper, we will adopt the “regular Brownian bridge method”, originally
introduced in Baldi (1995). From the numerical viewpoint, if the exact ¢, and A, in
Equation (3.3) can be exactly computed, Linetsky’s procedure may be more efficient
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than the “regular Brownian bridge method” (except in the Black-Scholes setting,
see Section 5.1). Nevertheless, it will be more time consuming than the last one
since obtaining e.g. the first one hundred exact ¢, and A, takes ’several minutes’
(see Linetsky (2004b)). In order to find an approximated solution to problem (P1)
by means of the regular Brownian bridge method, we consider the interval [s, t] and
we discretize it by means of ug = s < u; < --- < t = uy. We denote by V the
continuous Euler scheme relative to V. This process is defined by

Vi = Vi + b(w, Vi) (u — w) + o (u, V) Wy — Wa), Vi = s,

with u = uy if u € [ug,ugy1), for the given time discretization grid uy := s +
k(f,\?s),k =0,---,N, on the set [s,t].

The regular Brownian bridge method is connected to the knowledge of the distri-
bution of the minimum (or the maximum) of the continuous Euler scheme V relative
to the process V over the time interval [s,t], given its values at the discrete time

observation points s = ug < u; < --- < uy =t (see, e.g., Glasserman, 2003).

Lemma 3.1.

. > 7 _ _ _ . —1

£ min, VlVow = vk = 0,02 N) = £(,_min, | b, (U9) - (3
where (Uk)g=0,.... N—1 are i.i.d random variables uniformly distributed over the unit
interval and Fv_k,lka 1s the inverse function of the conditional cumulative function
Fopoyr» defined by

2N . .
Fop oy (1) = exp ( — W(u — ) (u — vk+1)> if w < min(vg, vg41)
1 otherwise.

We deduce from the previous lemma the following result.

Proposition 3.2. We have:

N-1
v (QJ% Y= “‘VS) - (H G i, () ‘Vg) |
Sus k=0
with
GV Vuy, (@) = 1= Fy, 7, (a).

Proof. We have (recall that Vs = V)

P<min Vu>a‘Vs> = E<P<min Vu>a’Vuk,k=0,-..,N> ‘Vs)

s<u<t s<u<t

= E(P in F' o (Up)>a) Vi)

< (kow--l,rll\f—l V”k’V”k+l( ‘) a)‘ 8)
Since the function F,,(-) is non-decreasing and the Uy’s are ii.d uniformly dis-
tributed random variables, we have

N-1
3 ¥ % = > [/ [/ I/
P (min Vo> alns) = ® (H (02 P, ) ‘”)

N-1 B
= E (H (1 — F“/%"—/%H (a)) ’VS> ,

k=0

15



which gives the announced result. O

By using Proposition 3.2, we estimate the survival probability under full information

]P’( inf V, >a}V—v>

s<u<t
by the following Monte Carlo procedure:

o Time grid specification. Fix ug = s < u; < --- <t = up, the set of N +1
points for the (discrete time) Euler scheme in the interval [s, t];

o Trajectories simulation. Starting from v and having fixed M (number of Monte
Carlo simulations), for j = 1,..., M, simulate the discrete path (Vi/,),_o

o Computation of the survival probability. For j = 1,..., M, compute (recall
that, for every j, Vi, = v)

pst via) H Gde, Vi (a). (3.5)

e Monte Carlo procedure. Finally, apply the Monte Carlo paradigm and get the
following approximating value

(3.6)

v
7 — ) n 2= Per(%50)
)7 M ‘

As a consequence, combining formulas (2.16) and (3.6) leads to the following
hybrid Monte Carlo - optimal quantization formula on the set {7 > s}

M N
1 oo
(SgllLf Vu >a‘}'§) N7 g g py(vpsa) I, (3.7)
j=1i=1

where pit(- ;a) was introduced in (3.5).

4 The error analysis

We now focus on the analysis of the error induced by approximating P < énf< . Vi > a’}" f )
s<u<

by
M N,

27 2 D rLaleh

7=111=0

We distinguish three types of error. The first error is induced by the approximation
of the filter II, ,, appearing in Equation (2.2) by ﬁyyn, defined in (2.10). This error
was already discussed in Section 2.3 in a general setting. The second one is the error
deriving from the approximation of

<1nf Vu >a‘V—v> by P(inf Vu>a|‘7szv>,

s<u<t s<u<t
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where V is the (continuous) Euler scheme relative to the process V (in the Black-

Scholes model, there is no need to use an Euler scheme since Equation (1.1) admits

an explicit solution). The last one is the error arising from the approximation of the

survival probability under full information by means of Monte Carlo simulations.
We next discuss the second and third kinds of error.

> Error induced by the Euler scheme. We here refer to Gobet (1998), in which
the author starts by investigating the case of a one-dimensional diffusion and to the
successive related article Gobet (2000) for the multidimensional case. In the two
papers the considered diffusion has homogeneous coefficients b and o. We start by
recalling here some important convergence results we find therein, we will then adapt
these results to our case.

Suppose that X is a diffusion taking values in R, with Xy = x, and define 7’ as
the first exit time from an open set D C R:

i=inf{u>0:X, ¢ D}.

Let 7/ denotes the exit time from the domain D of the continuous Euler process
X. In order to give the error bound in the approximation of E, (]1{T/>t}f(Xt)) by
E. (]l{‘ré>t} I (Xt)) the following hypotheses are needed:

(H1) bis a C;°(R,R) function and ¢ is in C;°(R, R),
(H2) there exists og > 0 such that Vz € R,0(z)? > o (uniform ellipticity),
(H3) P, (infyepo) Xt =a) = 0.

The following proposition states that, under Hypothesis (H3), the approximation
error goes to zero as the number of time discretization steps goes to infinity.

Proposition 4.1 (Convergencg). Suppose that b and o are Lipschitz, D = (a,+00)
and that (H3) holds. If f € C(D,R) then,

Ngrfoo El’[]l{ré>T}f(XT)] - Ew[ﬂ{f’>T}f(XT)} =0.

Note that in the homogeneous case, when D = (a,+00), a sufficient condition in
order for (H3) to hold is (see Gobet, 1998, Prop. 2.3.2)

o(a) #0. (4.1)
On the other hand, the rate of convergence is given by the following

Proposition 4.2 (Rate of convergence). Under Hypotheses (H1) and (H2), if
f € CLH(D,R), then there exists an increasing function K(T) such that

BolWrzory /(X7)] = Balll oy f(X)]| < Z= KD,

b
VN

where ||f|I%) = 3} sup,ep |f9 ().
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Remark 4.3. One notes, by generalizing the proof of Propositions 2.3.1, 2.4.3 and
2.3.2 in Gobet (1998), that the two previous propositions and condition (4.1) still
hold when the diffusion coefficients are in-homogeneous, as in our setting, by replac-
ing Hypotheses (H1) and (H2) by (I) and (J) :

(I) b and o are C;° functions with respect to both arguments ¢ and v, with uni-
formly bounded partial derivatives with respect to v,

(J) o is uniformly elliptic, i.e., Ja > 0 such that o2(¢,v) > a,V(t,v) € [0,T] x R.

> Error induced by Monte Carlo approximation. This error comes from the
estimation of P (minsgugt V., > a‘Vs = U;) =E ( ,]f:_ol GV“k’Vuk+1 (a)‘f/s = Ué), for
every it =1,---, Ng, by
M _§ o/
Zj:l Pg,t(vé; a)
M 9

where pg7t(- ;a) is defined in (3.5). We have for every i = 1,--- | N,

M (i
j=1 Dy t(Us’ a

N-1 \ .
HE( kl_IO G‘_/“k"—/“k+1(a)’vs - vé) - i M )H2 - O(\/lﬂ) (4.2)

By adapting the previous results to our case, namely by identifying V with X
and S with Y, one deduces an error bound for the estimation of IL,,F(s,t,-) by
ﬁymFMN(s,t,:c), where n is the dimension of the observation vector y (or, equiva-
lently, n + 1 is the number of points in the time discretization grid of the interval
[0,s]) and where Fyn(s,t,2) is a Monte Carlo estimation of F(s,t,-) of size M,
based on a time discretization grid, between s and ¢, of size N + 1. We state, then,
the main result of this section.

Theorem 4.4. Suppose that the transition operators of Vi given Vi1, k=1,...,n,
satisfy Assumption (A1) and that the conditional law of Sy given (Vi—1,Sk—1, Vi)
admits a density satisfying (A2). Suppose, furthermore, that the coefficients b and
o of V fulfill Hypotheses (H1)-(H2). Then, for every p > 1,

|Hy7nF(57t7 ) - ﬁy,nFMN<3ﬂtv )’ < n( ) v ¢ ZBn y p) Hvk - Vka

1 1
co(L)ro () |
(7)o (om
where n is the dimension of the observation vectory, N stands for the size of the time
discretization grid for the Fuler scheme from s to t and M is the number of Monte

Carlo trials. Furthermore, Kg', ¢n(y), én(y) and B,k = 0,...,n, are introduced in
Theorem 2.1.

Remark 4.5. (About the hypotheses of Theorem 4.4) We consider the case when
V is a time homogeneous diffusion.
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>> Concerning Assumption (A2) (i), the conditional density functions g given in
Equation (2.14) are bounded on R x (0,+00) X R X (g,400) for every ¢ > 0. The
Lipschitz condition (A2) (ii) holds.

> If we suppose that the coefficients b and o of the diffusion V' are Lipschitz, we
show, by using the Euler scheme relative to V', that the transition operators Pj
defined by Py f(x) := E(f(Vik)|Vk—1 = x), satisfy

|Pef(x) — Prof (2")] < C[f]uiplz — |

for every Lipschitz function f with Lipschitz constant [f]ri,. Then Hypothesis (A1)
holds true.

> As concerns the Lipschitz property of the function F'(s,t,-), it follows from Propo-
sition 2.2.1 in Gobet (1998), in the case when the coefficients of the diffusion satisfy
Hypotheses (H1) and (H2) and for ¢ > s.

Proof (of Theorem 4.4). We have

Iy nF(s,t,-) = MynFan(s,t,)] < |HynF(s,t,-) — My F(s,t,-)]
+ |Hy’nF(S,t,‘) _Hy,TLFAIN(Sjt).)|'

The error bound of the first term on the right-hand side of the above inequality is
given by Theorem 2.1. As concerns the second term, we have

N
|Hy7nF(87t, ) _ Hy,nF]WN(S’ t7 )’ = ‘ ZHZJL(F(S’ t, 'U;) - FA{N(S7t7 U;))‘
i=1
N N
< sup |F(s,t,v) — Fun(s,t,v)] ZHZ n
vER i=1 7
= sup|F(s,t,v) — Fun(s,t,v)|.
veER

On the other hand, we have for every v € R

|F(s,t,v) — Fyn(s,t,v)] <

N-1
]P)U(T > t) - EU( H GVukvVukH (a)) ‘
k=0

+ |

Ev(zj_[:Gvuk,vml (@) - WHQ

We then deduce from Proposition 4.2 and from Equation (4.2) that

F(5,4,0) — Fyn(s,t,0)| < O <\/1N> +0 <\/1M> ,

which completes the proof since the error bounds do not depend on v. O

5 Numerical results

In the numerical experiments we deal with the estimation of the credit spread for
zero coupon bonds. For simplicity we suppose that investors are risk neutral so that
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here we directly work under a risk neutral probability Q. We also suppose that the
market is complete (remark that V' is not a traded asset then it will be necessary to
complete the market), so that Q is unique.

In this section S represents the stock price of an asset issued by the firm. We
fix s and, given the observations of S from 0 to s, we estimate the spread curve for
different maturities ¢ (¢ > s). The credit spread is the difference in yield between a
corporate bond and a risk-less bond (Treasury bond) with the same characteristics.
It can be seen as a measure of the riskiness relative to a corporate bond, with respect
to a risk-free bond. If we suppose for simplicity that the face value is equal to 1 and
the recovery rate is zero, the credit spread under partial information from time s
to maturity ¢, S(s,t), equals (see e.g. Bielecki and Rutkowski, 2004 and Coculescu,
Geman and Jeanblanc, 2008)

log (Q(infscy<s Vi > a|FY))

S(s,t) = — P

This section is divided into two parts. We first focus on simulations, namely, having
arbitrarily fixed the model parameters, we simulate different trajectories of S and
we compute, in two examples, the credit spreads for zero coupon bonds. The second
part is devoted to calibration.

5.1 Simulations

We consider two models for the dynamics of the firm value V: a Black-Scholes one
and a CEV (Constant Elasticity of Variance) model. In both cases we fix s = 1 and,
given the simulated trajectory of S from 0 to s, we estimate the spreads S(1,¢) for
different maturities ¢ varying 0.1 by 0.1 from 1.1 to 11 (the time unit is expressed in
years).

> The Black-Scholes model. We consider the following model for the firm value’s
and the observed process’ dynamics:

dVy = Vi(pdt + odWy), ) Vo = v, (5.1)
dSt = St(’l”dt + Vth + 5th), So = 9, ’
so that s Vi
t v t 1% -
otz — = . 2
S, “ov T (r ua)dt+ 6dW; (5.2)

For simplicity, we set » = u = 0.03 and ¢ = v, meaning that the return on S is the
return on V' affected by a noise. The other parameters values are ¢ = 0.05, § = 0.1
and vg = 86.3. The barrier a is fixed to 76. It is important to note that since V'
is not traded in the market, the return on V' is not necessarily equal to the interest
rate 7.

Notice that when V evolves following a Black-Scholes dynamics, the quantization
grids of the firm value process can be derived instantaneously from optimal quadratic
functional quantization grids of the Brownian motion, which can be downloaded
on the website www.quantize.math-fi.com (for more information about functional
quantization for numerics see e.g. Pages and Printems (2005)). This drastically
cuts down the computational cost and allows working with grids of higher size.
Furthermore, the transition probabilities are estimated using Equation (2.15) and
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the survival probabilities F(s,t,v}),i =1,---, N,, (under Q) in Equation (2.16) are
computed via Equation (3.2). We then obtain a single spread estimate in one second.

We set the number n of discretization points over [0, s] equal to 50 and for every
k=1, ---,n, the quantization grid size Nj is set to 966, with Ny = 1.

Numerical results are presented in Figures 2 and 3. Figure 2 is relative to the
partial information case, where three simulated trajectories of the observable process
S and the corresponding credit spreads are depicted. Figure 3 treats the full infor-
mation case, where we suppose that we directly observe V. Then, in three examples,
corresponding to three different trajectories of V' (left hand side of Figure 2), we
compute the corresponding credit spreads (right hand side of Figure 2).

We deduce from (5.1) (with g = r) that

St — %67%527&4*5‘7%'
The correlation coefficient is, then, given for every ¢ by

eo?t — 1
p(t) == (2100t _ 1’

meaning that the firm value V is positively correlated to the observation process S.
Observe that when o < 4, p(t) is a strictly decreasing function and goes to 0 as t goes
to infinity. This tells us that the a posteriori information on V given S decreases as
the maturity t increases. This is what we observe in the spreads curves from Figures
2 and 3, since for large maturities the spreads values almost coincide for analogous
trajectories (e.g. for trajectories SU and VU).

0.25 ‘

°
8
T

S Trajectories
SPREADS
°
&
1

®
3
I
o
>
I

0.05+

—-- Spreads for SU
—— Spreads for SM
rrrrrr Spreads for SD

Time Time to maturity

Figure 1: Three trajectories of the observed process S (on the left) and the corresponding
spreads (on the right).

First of all, we notice that the short term spreads under partial information,
being the default time totally inaccessible, do not vanish, as it is the case in the full
information model. Moreover, since V; and Sy are positively correlated, it is expected
that the more the trajectory of S behaves “badly”, the higher the short term spreads
are, as shown in Figure 2.

21



7/
— /
oy
i ] \ / N /
oA SV
] /N \./
] JERAPS
100-| i
g A @
S B a
8 95 i
g 4 o
[y %)
o
90-
85
ou T T T T T T T T T
00 o1 02 03 04 05 06 07 08 08 10
Time

Time to maturity

Figure 2: Three trajectories of the observed process S (on the left) and the corresponding

spreads (on the right).
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Figure 3: Three trajectories of the value process in the full information case (on the left)
and the corresponding spreads (on the right).
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In the full information setting, on the other hand, the short term spreads are
always equal to zero, but in “bad” situations (for example in the case of trajectory
VD on the left-hand side of Figure 3) the medium term spreads can be higher than
in the partial information model.

> The CEV model. We suppose now that the firm value’s and the observed process’
dynamics are given by

{dw = Vilpdt +4VPAWy), Vo=, (5.3)

dSt = St(’l“dt + O'th + 5th), So = 0,

where y = r = 0.03, v = 744.7 (it is chosen so that the initial volatility equals 0.10),
B = —2 (notice that in this case one of the characteristics of the model is that the
leverage effect holds: a firm value process increase implies a decrease in the variance
of the price process return), o = 0.05,5 = 0.1,v9 = 86.3. The barrier a here is set to
be equal to 79.

For numerics, the number n of discretization points over [0, s] equal to 50 and
for every kK = 1,--- ,n, the quantization grid size Ny is set to 60, with Ng = 1
(here, since we cannot obtain the quantization grids from the optimal quadratic
quantization grids of the Brownian motion, we use Lloyd’s algorithm). The number
of FEuler discretization steps N equals 50 for ¢ varying 0.1 by 0.1 from 1.1 to 3.0
and N = 100 for ¢ varying 0.1 by 0.1 from 3.1 to 11.0. The number of Monte Carlo
trials M is set to 100000. In the quantization phase we obtain the optimal grid by
carrying out 80 Lloyd’s I procedures.

Numerical results are presented in Figure 5, where three simulated trajectories of
the observable process S and the corresponding spreads are depicted. We first notice
that the spreads in this example are higher than the ones in the previous example.
This is due to the fact that in this case the observed process S is more volatile, as it
can be seen from Figure 5, compared to Figure 2.

Secondly, we remark, as in the previous example, that the more the trajectory
of S behaves “badly”, the higher the short term spreads are, as shown in Figure 5.

Moreover, notice that the spread curves corresponding to the two worst S trajec-
tories seem to cross, however a zoom in the graph shows that it is not the case and
that the spreads curve for SD CEV is always above the one for SM CEV. This can be
explained by noticing that the model we use keeps the memory of all the observed
path and that the trajectory SD CEV is globally worse than the trajectory SM CEV.

Remark 5.1. a) The most important fact from the numerical point of view is
that, as soon as the process V is quantized over [0,s], the survival probability
Qinfs<y<t Vi > a|]:;g ) is estimated for every maturity ¢ > s without modifying
the optimal quantization grid of V.

b) As expected, in both Black-Scholes and CEV models, numerical tests confirm
that the spread increases as the barrier a(a < vp), tends to vp.

5.2 Calibration issues

For calibration to real data, we consider the Black-Scholes model

dVy = Vi(pdt +odWy), Vo=,
dS; = Si(rdt+odW, +6dW;), So = so,
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Figure 4: Three trajectories of the observed process S in the CEV model (on the left) and
the corresponding spreads (on the right).

even if the methodology presented below may be applied to other models. The
calibration has been done in two steps. The first step, related to the learning phase,
consists in calibrating the parameters of the stock price S in the observation interval
[0,s]. The remaining parameters are, then, calibrated from the market data for
credit spreads. Recall that the quantization grids of the firm value process can be
derived from the optimal quadratic functional quantization grids of the Brownian
motion.

> Calibration of S’s parameters. We work on JP Morgan weekly stock prices
data (available on Yahoo finance website www.finance.yahoo.com/) for the period
03/22/2009 - 03/22/2010, corresponding in our setting to the observation time in-
terval [0, s] with s = 1. The data set is, then, of size 53 and each considered stock
price S;,i = 0,---,52, is computed as the average between the bid and ask prices
(see Figure 6 on the left). The considered interest rate r = 0.51% is obtained as
the average of the three-months U.S. Libor rates in the period March 2009 - March
2010. Given the above model for S, one can estimate the parameter 0 := /o2 + §2
using elementary statistical theory. The obtained estimation 6 from real data is
0 = 0.2496.

Before dealing with the second step of the calibration we study the impact of the

noise parameter ¢ € (0, é) on the credit spread (once 0 is fixed, o = V 62 — §2 ) For
this purpose, we set u = r to have

dsy dV; -

— = — + §dW,. 5.5

5~ w o (55)
We plot in Figure 7?7 the term structure of credit spread S(1,¢) for ¢ varying 0.1 by
0.1 from 1.1 to 6 and for 6 = {0.05,0.10,0.15,0.20}. The considered values for vy and
a are vg = 2,079,188,000% and a = 1,908,994,000$8. They represent, respectively,
the total assets value and the total liabilities balance sheet value of the firm at the
end of March 2009 (both available on Yahoo finance website). In this numerical
implementations we have set the number of discretization points over [0, 1] to 53 and
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the quantization grid size Ny = 966, for k = 1,--- ;53 and Ny = 1. Numerical results
show that the spreads increase as the noise parameter ¢ increases. This naturally
comes from Equation (5.5), since the more ¢ is large, the more the information on S
is noisy and so the higher is the risk perception of the investor. Moreover, for small
values of § (as, for example, for 6 = 0.05), the term structure of credit spread has
a form similar to the one we found in the complete information case (see Figure 3).
Then, varying § may allow us to obtain a rich set of different forms of the credit
spread term structure.
We now focus on the calibration to real data.
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Figure 5: Spreads computed with different values of §.

> Calibration. As previously remarked, the parameters values vy and a are known
and they correspond to the total assets value and to the total liabilities value
of the firm at the end of March 2009, namely vg = 2,079,188,000$ and a =
1,908,994, 000%. Furthermore, we set the initial stock price value and the inter-
est rate to, respectively, sqg = 27,365 and r = 0.51%.

We calibrate p and d on the credit spreads (for zero coupon bonds) market data,
that is, given a set of credit spreads data {s;,i = 1,---,4}, at time s = 1 and for
different maturities ¢; = 7/12;t9 = 11/12;t3 = 1;¢4 = 13/12, we find (u*,0*) that
minimize the quadratic error

(S, t:) — s,)°.

4
=1

]

The market data {s;,,7 = 1,---,4} are obtained as the difference between riskless
Treasury bond yields and JP Morgan zero coupon bonds (Medium Term Note zero
coupon SER E principal protected bond) yields. Since there is a mismatch between
the maturities of corporate and Treasury bonds in the sample, we interpolate the
riskless yields in order to have a continuum of maturities and we compute the spreads
for all the ¢;’s. For the calibration we restricted our search procedure on the domain
[—0.1,0.1] x [0.01,0.1]. The optimal values obtained are (©*,6*) = (0.03,0.075) and
the corresponding credit spread term structure over three years is depicted in Figure
6, right-hand side. The quadratic error equals 3.5 x 1072, Notice that the most
challenging task in the calibration phase is the collection of real data, because zero
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coupon corporate bond prices at a fixed time s, issued by the same firm and with
identical features, are only given for a small number of different maturities. This is
why the used set of data is of small size.

mu=0.081; delta=0.14
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Figure 6: JP Morgan weekly stock prices over the period 03/22/2009 - 03/22/2010 (on
the left) and corresponding credit spreads curve over three years obtained for (u*,d*) =
(0.03,0.075) calibrated to market data (black square dots).
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